

Tetrahedron Letters 41 (2000) 6941-6944

TETRAHEDRON LETTERS

Lithium N-trityl-N-(R)-1-phenethylamide, a readily available and useful base for the enantioselective formation of chiral enolates from achiral ketones

Jakub Busch-Petersen and E. J. Corey*

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA

Received 14 July 2000; accepted 17 July 2000

Abstract

Lithium N-trityl-N-(R)-1-phenylethylamide (6) is a readily available and useful reagent for the enantioselective (20:1) conversion of 4-*t*-butylcyclohexanone to the corresponding (S)-enolate. This reaction provides access to numerous useful chiral compounds. © 2000 Elsevier Science Ltd. All rights reserved.

We recently reported a convenient one-step synthesis of trityl-*t*-butylamine (1) and the application of the corresponding lithium amide to highly stereoselective enolate formation from a variety of ketones.¹ The ease of preparation and recovery of 1 and the effectiveness of the lithio derivative as a superhindered base prompted us to investigate a chiral analog, *N*-trityl-*N*-(*R*)-1-phenylethyl amine (2), $[\alpha]_D^{23} +114$ (*c* 1.0, in CH₂Cl₂), which is also available in one step by *N*-tritylation of commercial (*R*)-1-phenylethylamine (Aldrich).¹ In this note we describe a few illustrative applications of 2 in enantioselective synthesis which build on previous observations involving the chiral amines 3 (Koga²) and 4 (Simkins³).⁴ The focus of the present study with 2 was on the substrate 4-*t*-butylcyclohexanone (5) since this is the most intensively studied reactant with respect to enantioselective enolate formation with bases such as 3 and 4.⁴

After several screening experiments to determine optimum conditions for the enantioselective deprotonation of **5** by **6**, the *N*-lithio derivative of **2**, it was determined that excellent results could be obtained using 2 equivalents of lithium bromide, i.e. **6** and LiBr in a ratio of 1:2, in the presence of trimethylchlorosilane⁵ in tetrahydrofuran (THF) as solvent at -100° C (liq. N₂–Et₂O bath). Removal of THF and evaporative distillation of the reaction mixture in vacuo afforded the trimethylsilyl enol ether **7** in 89% yield and 91% enantiomeric excess (ee).^{6,7} Reaction of **7** with 1,4-benzoquinone in the presence of Pd(OAc)₂ in CH₃CN solution at 23°C afforded the chiral enone **8**, $[\alpha]_D^{23}$ +50.0 (*c* 0.02 in CHCl₃), of 91% enantiomeric purity in 83% isolated yield. The

^{*} Corresponding author.

conversion of 5 to 7 by 6 is considerably less enantioselective in the absence of LiBr or using 6 plus a coordinating diamine such as tetramethylethylenediamine (TMEDA) in THF (Scheme 1).

Scheme 1.

The enantioselectivity of the deprotonation of 5 by 6-2LiBr to form the silvl enol ether 7 is comparable with the best results reported for the bases 3 and 4 which appear to be the most effective of those described in the literature.⁴

We have also examined the application of the hindered chiral base **6** to the enantioselective Robinson annulation of 4-*t*-butylcyclohexanone. Deprotonation of **5** by **6**–2LiBr, in the THF as described above, and subsequent reaction with methyl cyanoformate and 2 equivalents of TMEDA at –100°C for 2 h afforded the β -keto ester **9** in ca. 70% yield.^{8,9} Treatment of **9** with diisopropylethylamine and methyl vinyl ketone (slow addition) in methanol at –78°C produced the Michael adduct **10** which upon heating with *p*-toluenesulfonic acid and 4 Å mol. sieves in benzene at reflux yielded the bicyclic α,β -enone **11** as a colorless oil in 69% overall yield after column chromatography on silica gel. The enantiomeric purity of **11**, $[\alpha]_D^{24}$ +74.1 (*c* 0.01 in CHCl₃), was determined to be 89% by HPLC analysis using a Chiralpak AD-RH column with 3:1 CH₃CN:H₂O for elution (retention times: major enantiomer, 6.6 min; minor enantiomer, 8.0 min) (Scheme 2).¹⁰

 β -Keto ester **9** is a versatile intermediate for the synthesis of many other types of compounds. For example, in connection with a project on enantioselective hydroxylation by lead tetraacetate we needed a supply of the chiral ligand **13**. This chiral β -hydroxy acid was readily synthesized

from 9 by a two-step sequence. Diastereoselective carbonyl reduction using 2.8 equivalents of SmI₂ in aqueous THF at 0°C,¹¹ and recrystallization from hexane afforded colorless crystals of 12, mp 83°C, $[\alpha]_D^{24}$ +11.3 (*c* 0.015 in CHCl₃), of 92% ee by ¹H NMR analysis of the Mosher ester.¹² Saponification of hydroxy ester 12 using 1:1 THF:1N aqueous LiOH at 0°C for 2 h provided, after recrystallization from EtOAc, colorless crystals of hydroxy acid 13, mp 161–162°C, $[\alpha]_D^{24}$ +21.6 (*c* 0.052 in EtOH), of ee >98% by ¹H NMR analysis of the Mosher ester.

The enantioselective generation of the chiral enolate **14** from **5** by asymmetric deprotonation using **6**–2LiBr can also obviously be applied to aldol coupling reactions. Treatment of the chiral enolate thus formed with benzaldehyde at -100° C in THF produced after chromatography on silica gel the major product **15** (58% yield, 89% ee by HPLC analysis using a Chiralpak AD-RH with 3:1 acetonitrile:water for elution¹³).¹⁴ Recrystallization of **15** from EtOAc–heptane gave **15** of 98.5% ee, $[\alpha]_D^{24}$ –49.7 (*c* 0.05 in EtOH), mp 74–74.5°C (Scheme 3).

Reaction of the chiral enolate 14 in THF solution at -100° C with a solution of monomeric formaldehyde in THF¹⁵ afforded, as major product after silica gel chromatography, the hydroxy ketone 16 as a colorless oil (ca. 50% yield); 89% ee by ¹H NMR analysis of the Mosher ester. Reduction of 16 with sodium triacetoxyborohydride in CH₃CN–HOAc at 23°C for 6 h produced the *trans* diol 17 cleanly as a colorless solid (from heptane), mp 86–87°C.¹⁶

Scheme 3.

6944

The basis of the observed ca. 20:1 enantioselectivity of deprotonation of **5** by **6** and LiBr to form the (S)-enolate **14** is a matter of conjecture at this time. One reasonable transition state model involves an eight-membered transition state with the ring members: α -H (axial), C(α), C=O, Li-Br and LiNR₂ with the lone pair on nitrogen attacking α -H (axial).

In summary, the chiral amine 2, which is readily available in one step from inexpensive commercial precursors, and the *N*-lithio derivative 6 are promising synthetic reagents. The utility of 6 in enantioselective enolate formation has been demonstrated by the conversion of 4-*t*-butyl-cyclohexanone (5) via the chiral enolate 14 to several interesting transformation products.

Acknowledgements

This work was supported by grants from the National Science Foundation and the National Institutes of Health.

References

- Busch-Petersen, J.; Corey, E. J. *Tetrahedron Lett.* 2000, 41, 2515. In this paper we inadvertently omitted referencing two earlier publications which were relevant: Brander, M. M. *Recl. Trav. Chim. Pays-Bas.* 1918, 37, 67 mentions, but provides no further information on trityl-*t*-butylamine. Maender, O. W.; Janzen, E. G. *J. Org. Chem.* 1969, 34, 4072 also mention this compound and describe it as a colorless liquid (solid, mp 90–91°C in our hands).
- 2. Shirai, R.; Tanaka, M.; Koga, K. J. Am. Chem. Soc. 1986, 108, 543.
- 3. Cain, C. M.; Cousins, R. P. C.; Coumbarides, G.; Simkins, N. S. Tetrahedron 1990, 46, 523.
- 4. For a recent review on enantioselective deprotonation by chiral bases, see: O'Brien, P. J. Chem. Soc., Perkin Trans. 1 1998, 1439.
- 5. Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495.
- 6. Enantiomeric excess of 7 was determined by transformation to 8 and analysis of 8 by HPLC using a Chiral Technologies Inc. Chiralpak AD column with 5% isopropyl alcohol in hexane for elution; retention times: minor enantiomer 6.3 min, major enantiomer 8, 7.3 min; flow rate, 1 mL/min at 23°C.
- 7. Extractive work-up of the residue remaining from the distillation of silyl enol ether 7 allowed efficient recovery of the chiral amine 2.
- (a) Crabtree, S. R.; Mander, L. N.; Sethi, S. Org. Synth. 1991, 70, 256. (b) Mander, L. N.; Sethi, P. Tetrahedron Lett. 1983, 24, 5425.
- 9. The enol methoxycarboxyl ester of **5** was produced as a byproduct of the conversion **5**→**9** in ca. 7% yield under these conditions; in the absence of TMEDA more of this byproduct was formed.
- 10. The relative stereochemistry of **11** follows from previously known diastereoselective Robinson annulations. See, for example: Turner, R. B.; Lee Jr., R. E.; Hildenbrand, E. G. J. Org. Chem. **1961**, *26*, 4800.
- (a) Singh, A. K.; Bakshi, R. K.; Corey, E. J. J. Am. Chem. Soc. 1987, 109, 6187. (b) See also: Beeson, C.; Pham, N.; Dix, T. A. Tetrahedron Lett. 1992, 33, 2925.
- (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543. (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 112.
- 13. Retention times: minor enantiomer, 7.1 min; major enantiomer, 8.3 min.
- 14. The assignment of absolute configuration of **15** follows from data reported above for the enolate **14**. The equatorial arrangement of the α -hydroxybenzyl substituent is indicated by the 500 MHz ¹H NMR spectrum of **15** which shows an 8.9 Hz coupling constant between the α -methine proton and one of the β -methylene protons. Finally, the configuration at the α -hydroxybenzyl stereocenter follows from the pericyclic chair ring transition state preference for the lithium enolate aldol reaction with aldehydes; see: House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; Olmstead, H. D. J. Am. Chem. Soc. **1973**, *95*, 3310.
- 15. Schlosser, M.; Jenny, T.; Guggisberg, Y. Synlett 1990, 704.
- Compounds 7–9, 11–13, and 15–17 described above were characterized by infrared, ¹H NMR, ¹³C NMR and high resolution mass spectra using chromatographically purified or recrystallized samples.